Nonlinear mappings preserving at least one eigenvalue

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Notes on graphs with least eigenvalue at least -2

A new proof concerning the determinant of the adjacency matrix of the line graph of a tree is presented and an invariant for line graphs, introduced by Cvetković and Lepović, with least eigenvalue at least −2 is revisited and given a new equivalent definition [D. Cvetković and M. Lepović. Cospectral graphs with least eigenvalue at least −2. Publ. Inst. Math., Nouv. Sér., 78(92):51–63, 2005.]. E...

متن کامل

“At least one” caching

We consider a variant of the caching problem, where each request is a set of pages of a fixed size, instead of a single page. In order to serve such a request, we require at least one of those pages to be present in the cache. Each page is assumed to have unit size and unit cost for getting loaded into the cache. We prove lower bounds on the competitive ratio for this problem in both the determ...

متن کامل

On distance-regular graphs with smallest eigenvalue at least -m

A non-complete geometric distance-regular graph is the point graph of a partial geometry in which the set of lines is a set of Delsarte cliques. In this paper, we prove that for fixed integer m ≥ 2, there are only finitely many non-geometric distance-regular graphs with smallest eigenvalue at least −m, diameter at least three and intersection number c2 ≥ 2.

متن کامل

Fat Hoffman graphs with smallest eigenvalue at least $-1-τ$

In this paper, we show that all fat Hoffman graphs with smallest eigenvalue at least −1−τ , where τ is the golden ratio, can be described by a finite set of fat (−1 − τ)-irreducible Hoffman graphs. In the terminology of Woo and Neumaier, we mean that every fat Hoffman graph with smallest eigenvalue at least −1−τ is anH-line graph, where H is the set of isomorphism classes of maximal fat (−1−τ)-...

متن کامل

- Inner Product Preserving Mappings

A mapping f : M → N between Hilbert C∗-modules approximately preserves the inner product if ‖〈f(x), f(y)〉 − 〈x, y〉‖ ≤ φ(x, y), for an appropriate control function φ(x, y) and all x, y ∈ M. In this paper, we extend some results concerning the stability of the orthogonality equation to the framework of Hilbert C∗modules on more general restricted domains. In particular, we investigate some asympt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Studia Mathematica

سال: 2010

ISSN: 0039-3223,1730-6337

DOI: 10.4064/sm200-1-5